Parrondo’s Capital and History Dependent Games
نویسندگان
چکیده
It has been shown that it is possible to construct two games that when played individually lose, but alternating randomly or deterministically between them can win. This apparent paradox has been dubbed “Parrondo’s paradox.” The original games are capital dependent, which means that the winning and losing probabilities depend on how much capital the player currently has. Recently, new games have been devised, that are not capital dependent, but history dependent. We present some analytical results using discrete-time Markov-chain theory, which is accompanied by computer simulations of the games.
منابع مشابه
Limit theorems for Parrondo’s paradox
That there exist two losing games that can be combined, either by random mixture or by nonrandom alternation, to form a winning game is known as Parrondo’s paradox. We establish a strong law of large numbers and a central limit theorem for the Parrondo player’s sequence of profits, both in a one-parameter family of capital-dependent games and in a two-parameter family of history-dependent games...
متن کاملInefficiency of voting in Parrondo games
We study a modification of the so-called Parrondo’s paradox where a large number of individuals choose the game they want to play by voting. We show that it can be better for the players to vote randomly than to vote according to their own benefit in one turn. The former yields a winning tendency while the latter results in steady losses. An explanation of this behaviour is given by noting that...
متن کاملQuantum Parrondo’s Games
Parrondo’s Paradox arises when two losing games are combined to produce a winning one. A history dependent quantum Parrondo game is studied where the rotation operators that represent the toss of a classical biased coin are replaced by general SU(2) operators to transform the game into the quantum domain. In the initial state a superposition of qubits can be used to couple the games and produce...
متن کاملCapital Redistribution Brings Wealth by Parrondo’s Paradox
We present new versions of the Parrondo’s paradox by which a losing game can be turned into winning by including a mechanism that allows redistribution of the capital amongst an ensemble of players. This shows that, for this particular class of games, redistribution of the capital is beneficial for everybody. The same conclusion arises when the redistribution goes from the richer players to the...
متن کاملSecond Parrondo's Paradox in Scale Free Networks
Parrondo’s paradox occurs in sequences of games in which a winning expectation value of a payoff may be obtained by playing two games in a random order, even though each game in the sequence may be lost when played individually. Several variations of Parrondo’s games apparently with the same paradoxical property have been introduced [5]; history dependence, one dimensional line, two dimensional...
متن کامل